COURSE OUTLINE

(1) GENERAL

SCHOOL	SCHOOL OF SCIENCES			
ACADEMIC UNIT	DEPARTMENT OF PHYSICS			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	32		SEMESTER	3
COURSE TITLE	Modern Phy	vsics I		
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			WEEKLY TEACHING HOURS	CREDITS
			5	6
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	General bac	kground		
PREREQUISITE COURSES:	None			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes			
COURSE WEBSITE (URL)	http://atomol.physics.uoi.gr/index_files/Page3239.htm http://ecourse.uoi.gr/enrol/index.php?id=880 http://ecourse.uoi.gr/enrol/index.php?id=1375			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The principal aim of this course is to introduce the student to the fundamental principles of theory of Relativity and Quantum Mechanics. Upon successful completion of this course the student will be able to:

- explain the principles and effects the Special Theory of Relativity as well as fundamental concepts such as the relativistic momentum.
- Solve problems on relativistic kinematics and dynamics.
- explain the relativistic Doppler effect and solve the corresponding exercises.
- explain the principles of the General Relativity theory
- explain the experimental results contradictory to Classical Mechanics which underlie the particle behaviour of light as well as the wave behaviour of particles.
- explain the Heisenberg principle of uncertainty and apply it to estimate the order of magnitude of basic physical quantities such as the energy of a quantum particle.
- explain the meaning of wavefunction of a particle and its connection to the probability of finding the particle in space.
- solve the Scrhödinger equation for simple one-dimensional quantum systems (infinite

well, step potential) and interpret its solutions (quantization of energy, tunneling effect, etc.).

etc.).	
General Competences Taking into consideration the general competences that t Supplement and appear below), at which of the following	he degree-holder must acquire (as these appear in the Diploma does the course aim?
Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas	Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others
-Search for, analysis and synthesis of data an technology,	d information, with the use of the necessary

- Working independently,

- Production of free, creative and inductive thinking

(3) SYLLABUS

- Relativity theory: Galilean transformations. The Michelson-Morley experiment. Special Relativity. Lorentz transformations. Energy and momentum. Elements of General Relativity.
- Quantum-mechanics: black-body radiation. Photoelectric effect. Compton effect. Pair production and annihilation. The Bohr model of the atom. The Davison-Germer experiment. De Broglie waves. Heisenberg uncertainty principle. Wavefunctions. Schrödinger equation.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face		
Face-to-face, Distance learning, etc.			
USE OF INFORMATION AND	Use of ICT in teaching and co	mmunication with students	
COMMUNICATIONS TECHNOLOGY			
Use of ICT in teaching, laboratory education,			
communication with students			
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are	Lectures	52	
described in detail. Lectures seminars laboratory practice	Tutorials	13	
fieldwork, study and analysis of bibliography,	Study of bibliography	62	
tutorials, placements, clinical practice, art	Non-directed study	20	
workshop, interactive teaching, educational	Exams	3	
etc.			
The student's study hours for each learning			
activity are given as well as the hours of non-			
airectea stuay accoraing to the principles of the FCTS	Course total	150	
	course total	150	
STUDENT PERFORMANCE			
EVALUATION	Middle term exams and publi	ic presentation of selected	
Description of the evaluation proceaure	topics at the end of the semester.		
evaluation, summative or conclusive, multiple			
choice questionnaires, short-answer questions,	Written exams for the evaluation of conclusive		
open-ended questions, problem solving,	understanding and problem-solving capabilities		
written work, essay/report, oral examination,			
public presentation, laboratory work, clinical			
other			

Specifically-defined evaluation criteria are	
given, and if and where they are accessible to	
students.	

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Σημειώσεις διδασκόντων (ecourse).
- Σύγχρονη Φυσική, Kenneth Krane, Broken Hill Publishers LTD (2019).
- Σύγχρονη Φυσική, R. Serway, C. Moses, C. Moyer, Πανεπιστημιακές Εκδόσεις Κρήτης (2009).